GNAO1 encephalopathy: further delineation of a severe neurodevelopmental syndrome affecting females
نویسندگان
چکیده
BACKGROUND De novo heterozygous mutations in the GNAO1 gene, encoding the Gα o subunit of G-proteins, are the cause of a severe neurodevelopmental disorder, featuring early infantile seizures, profound cognitive dysfunction and, occasionally, movement disorder (early infantile epileptic encephalopathy-17). METHODS We report a further case of this association in a 20 month-old Spanish girl with neonatal-onset refractory seizures, progressive microcephaly, oral-lingual dyskinesia and nearly absent psychomotor development. We performed whole-exome sequencing, a computational structural analysis of the novel gene variant identified and reviewed the previously reported cases. RESULTS Trio whole-exome-sequencing uncovered a de novo p.Leu199Pro GNAO1 mutation. Computational structural analysis indicates this novel variant adversely affects the stability of the G-protein heterotrimeric complex as a whole. Of note, our patient showed a sustained seizure reduction while on a ketogenic diet. CONCLUSIONS With this observation, a total of twelve patients with GNAO1 encephalopathy have been reported. Oral-lingual dyskinesia and responsiveness of seizures to ketogenic diet are novel features. The distorted sex ratio (12/12 females) of the condition remains unexplained; a differential gender effect of the disruption of G-protein- mediated signal transduction on the developing brain can be hypothesized.
منابع مشابه
Epileptic encephalopathy, movement disorder, and the yin and yang of GNAO1 function.
GNAO1 encephalopathy comprises a spectrum of neurologic phenotypes that result from de novo heterozygous mutations in GNAO1, a gene coding for the subunit of a G protein that is highly expressed in the CNS and is involved in second messenger signaling. De novo heterozygous mutations in the gene were first described in patients with a severe, infantile-onset epileptic encephalopathy known as Oht...
متن کاملClinical Phenotype of De Novo GNAO1 Mutation
Mutations in the guanine nucleotide-binding protein (G protein), a activating activity polypeptide O (GNAO1) gene have recently been described in 6 patients with early infantile epileptic encephalopathies. In the present study, we report the phenotype and the clinical course of a 4-year-old female with an epileptic encephalopathy (Ohtahara syndrome) and profound intellectual disability due to a...
متن کاملClinical Phenotype of De Novo GNAO1 Mutation: Case Report and Review of Literature.
Mutations in the guanine nucleotide-binding protein (G protein), α activating activity polypeptide O (GNAO1) gene have recently been described in 6 patients with early infantile epileptic encephalopathies. In the present study, we report the phenotype and the clinical course of a 4-year-old female with an epileptic encephalopathy (Ohtahara syndrome) and profound intellectual disability due to a...
متن کاملLETTER TO JMG MECP2 gene nucleotide changes and their pathogenicity in males: proceed with caution
Rett syndrome (RTT) is one of the most frequent neurodevelopmental disorders affecting almost exclusively females. It is characterised by normal development until 6-18 months followed by a more or less rapid decline of acquired functions mainly of the higher brain functions, such as communicative speech and purposeful hand use. Mutations in the MECP2 gene have been described in RTT patients wor...
متن کاملMolecular genetics of Rett syndrome and clinical spectrum of MECP2 mutations.
Rett syndrome, a neurodevelopmental disorder that is a leading cause of mental retardation in females, is caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). MECP2 mutations have subsequently been identified in patients with a variety of clinical syndromes ranging from mild learning disability in females to severe mental retardation, seizures, ataxia, and som...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016